MATH-5C TEST 1 (Chapter 12, 13.1, 13.2 13.4i) SAMPLE

100 points	NAME:
Phones must be turned OFF and put away All of your solutions must be on this test vork is not shown. I expect clear preser	y. No scratch paper. No graphing calculator. paper. No credit will be given for solutions if ntations with words of explanation.
(1) Given the vectors $\mathbf{a} = -4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$,	$\mathbf{b} = 7\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and find the following: (4 points each)
a) a X b	
b) the angle between a and b	
c) proja b	
d) a vector of length 3 in the direction	n of b
e) a value for k such that < k, 8,-6 > i	is orthogonal b
f) If point P is (1,9,1) and point Q is (0, 10, 4) is \overrightarrow{PQ} parallel to a?
2) Given the forces \mathbf{v} and \mathbf{w} as shown, where $\mathbf{w}_{\mathbf{f}}$	$\ \vec{v}\ = 40$ lbs and $\ w\ = 20$ lbs, find the resultant
60 degrees	(9 points each) (9 points (9 points (9 points each)
v	

(3) Find the intersection point of the following lines, if any, and find the equation of the plane (3, -1)

containing them.
$$L_1 \begin{cases} x = 2t-1 \\ y = 1-t \\ z = 3t \end{cases} \begin{cases} x = 1+s \\ y = 2s \\ z = 3-2s \end{cases}$$

(7 points)

(4) Prove: If a and b are vectors in \mathbb{R}^3 and c is a real number then $(ca) \bullet b = c(a \bullet b)$.. (6 points) (5) On separate axes, sketch a graph of the following surfaces. Name the surface and give pertinent information such as traces. (21 points)

(a)
$$9y^2 - 4z^2 = 36$$

(b)
$$9x^2 + y^2 - z^2 = 9$$

(c)
$$y = \sqrt{4x^2 + z^2}$$

(6) Consider the following lines. Show whether they intersect, are parallel, or are skew. <u>IF</u> they intersect, find the point of intersection AND find the equation of the plane containing the lines. <u>IF</u> they are parallel or skew, find the distance between them.

 $L_{1} \begin{cases} x = 2t + 1 \\ y = t \\ z = 4t + 1 \end{cases} \qquad L_{2} \begin{cases} x = s \\ y = 2s - 2 \\ z = 3s - 2 \end{cases}$

(7) Find an equation of the plane that contains the line of intersection of the planes x-z=1 and y+2z=3 and is perpendicular to the plane x+y-2z = 1 (5 points)

(16 points)

(8) Find the point of intersection, if any, of the helix $r_1(t) = \langle cost, sint, t \rangle$ and the curve $r_2(t) = \langle 1+t, t^2, t^3 \rangle$. Find the equations of the tangent lines to each of the curves at this point.

(9) Sketch the graph of $\bar{r}(t) = \langle \cos t, 3\sin t, -t \rangle$, and show direction of increasing t. Give the equation of a surface on which this curve lies and show this surface on your sketch.

(12 points)